Gemini
Overview Gemini integration is implemented using the Google Generative AI SDK, specifically using the 'gemini-pro' model.
Implementation
Provider Setup
import { GoogleGenerativeAI, GenerativeModel } from '@google/generative-ai';
class GeminiProvider implements LLMProvider {
private model: GenerativeModel;
constructor() {
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY!);
this.model = genAI.getGenerativeModel({ model: 'gemini-pro' });
}
}
Message Generation
async generateResponse(
messages: Array<{ role: string; content: string }>,
cleanContent: string
): Promise<LLMResponse> {
const chat = this.model.startChat({
history: messages.slice(0, -1).map(msg => ({
role: msg.role === 'assistant' ? 'model' : 'user',
parts: [{ text: msg.content }],
})),
});
const result = await chat.sendMessage(
messages[messages.length - 1].content
);
const response = await result.response;
return {
content: response.text(),
totalTokens: undefined,
toolCalls: undefined
};
}
Features
Supported Capabilities
Chat history management
Role-based messaging
Text generation
Error handling
Limitations
No function calling support
No token counting
No streaming support
Error Handling
Implementation
try {
// Message generation logic
} catch (error) {
console.error('Gemini Error:', error);
throw new Error('Failed to generate Gemini response');
}
Common Errors
API key issues
Rate limiting
Invalid requests
Model availability
Best Practices
Configuration
Secure API key management
Model version selection
Error logging
Response validation
Message Handling
Proper role mapping
History management
Content validation
Error recovery
Related Documentation
Last updated